- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Anderson, Gemma E. (1)
-
Bahramian, Arash (1)
-
Baldassare, Vivienne F. (1)
-
Brumback, McKinley C (1)
-
Dage, Kristen C (1)
-
Gallo, Elena (1)
-
Galvin, Timothy J (1)
-
Greene, Jenny E. (1)
-
Miller-Jones, James C. A. (1)
-
Miller-Jones, James_C A (1)
-
Molina, Isabella (1)
-
Owens, Milo G. (1)
-
Panurach, Teresa (1)
-
Paul, Jeremiah D (1)
-
Paul, Jeremiah D. (1)
-
Plotkin, Richard M (1)
-
Plotkin, Richard M. (1)
-
Reines, Amy E. (1)
-
Rollings, Alexandar P. (1)
-
Saikia, Payaswini (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ultraluminous X-ray sources (ULXs) were once largely believed to be powered by super-Eddington accretion onto stellar-mass black holes, although in some rare cases, ULXs also serve as potential candidates for (sub-Eddington) intermediate-mass black holes. However, a total of eight ULXs have now been confirmed to be powered by neutron stars, thanks to observed pulsations, and may act as contaminants for the radio/X-ray selection of intermediate-mass black holes. Here, we present the first comprehensive radio study of seven known neutron star ULXs using new and archival data from the Karl G. Jansky Very Large Array and the Australia Telescope Compact Array, combined with the literature. Across this sample, there is only one confident radio detection, from the Galactic neutron star ULX Swift J0243.6+6124. The other six objects in our sample are extragalactic, and only one has coincident radio emission, which we conclude is most likely contamination from a background HII region. We conclude that with current facilities, neutron star ULXs do not produce significant enough radio emission to cause them to be misidentified as radio-/X-ray-selected intermediate-mass black hole candidates. Thus, if background star formation has been properly considered, the current study indicates that a ULX with a compact radio counterpart is not likely to be a neutron star.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Thygesen, Erica; Plotkin, Richard M.; Soria, Roberto; Reines, Amy E.; Greene, Jenny E.; Anderson, Gemma E.; Baldassare, Vivienne F.; Owens, Milo G.; Urquhart, Ryan T.; Gallo, Elena; et al (, Monthly Notices of the Royal Astronomical Society)ABSTRACT Owing to their quiet evolutionary histories, nearby dwarf galaxies (stellar masses $$M_\star \lesssim 3 \times 10^9 \, \mathrm{M}_\odot$$) have the potential to teach us about the mechanism(s) that ‘seeded’ the growth of supermassive black holes, and also how the first stellar mass black holes formed and interacted with their environments. Here, we present high spatial resolution observations of three dwarf galaxies in the X-ray (Chandra), the optical/near-infrared (Hubble Space Telescope), and the radio (Karl G. Jansky Very Large Array). These three galaxies were previously identified as hosting candidate active galactic nuclei on the basis of lower resolution X-ray imaging. With our new observations, we find that X-ray sources in two galaxies (SDSS J121326.01+543631.6 and SDSS J122111.29+173819.1) are off-nuclear and lack corresponding radio emission, implying they are likely luminous X-ray binaries. The third galaxy (Mrk 1434) contains two X-ray sources (each with LX ≈ 1040 erg s−1) separated by 2.8 arcsec, has a low metallicity [12 + log(O/H) = 7.8], and emits nebular He ii λ4686 line emission. The northern source has spatially coincident point-like radio emission at 9.0 GHz and extended radio emission at 5.5 GHz. We discuss X-ray binary interpretations (where an ultraluminous X-ray source blows a ‘radio bubble’) and active galactic nucleus interpretations (where an $$\approx 4\times 10^5 \, \mathrm{M}_\odot$$ black hole launches a jet). In either case, we find that the He ii emission cannot be photoionized by the X-ray source, unless the source was ≈30–90 times more luminous several hundred years ago.more » « less
An official website of the United States government
